Marks

Reg No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination January 2022 (2015 Scheme)

Course Code: EC205

Course Name: ELECTRONIC CIRCUITS (EC,AE)

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

a) For the given circuit β=100 for silicon transistor. Calculate the operating points. (7)
 Assume data that are not given.

- b) With a neat circuit diagram, design a RC integrator circuit for an input frequency (4) of f = 1 kHz.
- c) Explain the concept of ac and dc load line. (4)
- 2 a) Derive the condition for a high pass RC circuit to behave as a differentiator. (5)
 - b) What is bias stability? Derive the stability factor for leakage current of a collector (7) to base bias transistor circuit.
 - c) Obtain the transfer function for a low pass filter. (3)
- 3 a) Draw the small signal hybrid Π model of the given circuit. Assume data not given. (8)

b) Derive the expression for voltage gain of a two-stage cascade amplifier. (7)

PART B Answer any two full questions, each carries 15 marks.

- 4 a) What is Miller effect? (3)
 - b) From the high frequency equivalent circuit, derive the expression for beta cut off (9) frequency of a bipolar transistor. Draw the frequency response for short circuit current gain.
 - c) What are the conditions for sustained oscillation? (3)
- 5 a) Find mid-frequency voltage gain and output impedance of a CE amplifier without (7) bypass capacitor using hybrid Π model.
 - b) Draw the circuit diagram of cascode amplifier. (4)
 - c) Explain the working of an LC tank circuit. (4)
- Draw the circuit diagram of a Hartley oscillator. In Hartley Oscillator L_1 =0.3mH, (4) L_2 =0,3mH and C=0.003μF. Calculate the frequency of oscillation.
 - b) What are different feedback topologies? Explain how the current series feedback (7) effect the input and output impedances.
 - c) Differentiate between synchronous and stagger tuning. (4)

PART C

Answer any two full questions, each carries 20 marks.

7 a) A class-B push pull amplifier working with V_{cc} =25V provides a 22V peak signal (5) to a 8Ω load. Calculate the amplifier efficiency and power dissipated per transistor.

02000EC205092001

	b)	With a neat circuit diagram, explain the working of a series voltage regulator with	(7)
		error amplifier.	
	c)	Draw the circuit diagram of a bistable multivibrator and explain its working with	(8)
		relevant waveforms.	
8	a)	With neat circuit diagrams and waveforms, explain the working of a transistor	(10)
		bootstrap sweep generatorcircuit. What are itsapplications?	
	b)	Draw the circuit diagram of a class AB push pull amplifier and explain its	(6)
		working.	
	c)	What is cross over distortion in amplifiers? How it is solved.	(4)
9	a)	Draw the circuit diagram of a transistor shunt voltage regulator and explain its	(8)
		working.	
	b)	Differentiate between line and load regulations.	(6)
	c)	Draw and explain the working of a Schmitt trigger.	(6)
